Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: covidwho-20243981

ABSTRACT

SARS-CoV-2 infects cells via its spike (S) protein binding to its surface receptor angiotensin-converting enzyme 2 (ACE2) and results in the production of multiple proinflammatory cytokines, especially in the lungs, leading to what is known as COVID-19. However, the cell source and the mechanism of secretion of such cytokines have not been adequately characterized. In this study, we used human cultured mast cells that are plentiful in the lungs and showed that recombinant SARS-CoV-2 full-length S protein (1-10 ng/mL), but not its receptor-binding domain (RBD), stimulates the secretion of the proinflammatory cytokine interleukin-1ß (IL-1ß) as well as the proteolytic enzymes chymase and tryptase. The secretion of IL-1ß, chymase, and tryptase is augmented by the co-administration of interleukin-33 (IL-33) (30 ng/mL). This effect is mediated via toll-like receptor 4 (TLR4) for IL-1ß and via ACE2 for chymase and tryptase. These results provide evidence that the SARS-CoV-2 S protein contributes to inflammation by stimulating mast cells through different receptors and could lead to new targeted treatment approaches.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/metabolism , Chymases/metabolism , Cytokines/metabolism , Interleukin-1beta/metabolism , Interleukin-33/metabolism , Mast Cells/metabolism , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Tryptases/metabolism
2.
Cell Immunol ; 386: 104705, 2023 04.
Article in English | MEDLINE | ID: covidwho-2266426

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection activates mast cells and induces a cytokine storm, leading to severe Coronavirus disease in 2019 (COVID-19). SARS-CoV-2 employs angiotensin-converting enzyme 2 (ACE2) for cell entry. In the present study, the expression of ACE2 and its mechanism in activated mast cells were studied utilizing the human mast cell line, HMC-1 cells and it was elucidated whether dexamethasone used as a treatment for COVID-19 could regulate ACE2 expression. Here we documented for the first time that levels of ACE2 were increased by stimulation of phorbol 12-myristate 13-acetate and A23187 (PMACI) in HMC-1 cells. Increased levels of ACE2 were significantly diminished by treatment with Wortmannin, SP600125, SB203580, PD98059, or SR11302. The expression of ACE2 was most significantly reduced by the activating protein (AP)-1 inhibitor SR11302. PMACI stimulation enhanced the expression of the transcription factor AP-1 for ACE2. In addition, levels of transmembrane protease/serine subfamily member 2 (TMPRSS2) and tryptase were increased in PMACI-stimulated HMC-1 cells. However, dexamethasone significantly lowered levels of ACE2, TMPRSS2, and tryptase generated by PMACI. Treatment with dexamethasone also reduced activation of signaling molecules linked to ACE2 expression. According to these findings, levels of ACE2 were up-regulated through activation of AP-1 in mast cells, suggesting that suppressing ACE2 levels in mast cells would be a therapeutic approach to lessen the harm caused by COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , Dexamethasone/pharmacology , Mast Cells/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/metabolism , Transcription Factor AP-1 , Tryptases
3.
Cells ; 12(5)2023 02 22.
Article in English | MEDLINE | ID: covidwho-2283959

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). About 45% of COVID-19 patients experience several symptoms a few months after the initial infection and develop post-acute sequelae of SARS-CoV-2 (PASC), referred to as "Long-COVID," characterized by persistent physical and mental fatigue. However, the exact pathogenetic mechanisms affecting the brain are still not well-understood. There is increasing evidence of neurovascular inflammation in the brain. However, the precise role of the neuroinflammatory response that contributes to the disease severity of COVID-19 and long COVID pathogenesis is not clearly understood. Here, we review the reports that the SARS-CoV-2 spike protein can cause blood-brain barrier (BBB) dysfunction and damage neurons either directly, or via activation of brain mast cells and microglia and the release of various neuroinflammatory molecules. Moreover, we provide recent evidence that the novel flavanol eriodictyol is particularly suited for development as an effective treatment alone or together with oleuropein and sulforaphane (ViralProtek®), all of which have potent anti-viral and anti-inflammatory actions.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Post-Acute COVID-19 Syndrome , Microglia/metabolism , Mast Cells/metabolism , Inflammation
4.
Front Immunol ; 13: 968981, 2022.
Article in English | MEDLINE | ID: covidwho-2114656

ABSTRACT

Background: The systemic inflammatory response post-SARS-CoV-2 infection increases pro-inflammatory cytokine production, multi-organ damage, and mortality rates. Mast cells (MC) modulate thrombo-inflammatory disease progression (e.g., deep vein thrombosis) and the inflammatory response post-infection. Objective: To enhance our understanding of the contribution of MC and their proteases in SARS-CoV-2 infection and the pathogenesis of the disease, which might help to identify novel therapeutic targets. Methods: MC proteases chymase (CMA1), carboxypeptidase A3 (CPA3), and tryptase beta 2 (TPSB2), as well as cytokine levels, were measured in the serum of 60 patients with SARS-CoV-2 infection (30 moderate and 30 severe; severity of the disease assessed by chest CT) and 17 healthy controls by ELISA. MC number and degranulation were quantified by immunofluorescent staining for tryptase in lung autopsies of patients deceased from either SARS-CoV-2 infection or unrelated reasons (control). Immortalized human FcεR1+c-Kit+ LUVA MC were infected with SARS-CoV-2, or treated with its viral proteins, to assess direct MC activation by flow cytometry. Results: The levels of all three proteases were increased in the serum of patients with COVID-19, and strongly correlated with clinical severity. The density of degranulated MC in COVID-19 lung autopsies was increased compared to control lungs. The total number of released granules and the number of granules per each MC were elevated and positively correlated with von Willebrand factor levels in the lung. SARS-CoV-2 or its viral proteins spike and nucleocapsid did not induce activation or degranulation of LUVA MC in vitro. Conclusion: In this study, we demonstrate that SARS-CoV-2 is strongly associated with activation of MC, which likely occurs indirectly, driven by the inflammatory response. The results suggest that plasma MC protease levels could predict the disease course, and that severe COVID-19 patients might benefit from including MC-stabilizing drugs in the treatment scheme.


Subject(s)
COVID-19 , Carboxypeptidases , Chymases/metabolism , Cytokines , Humans , Mast Cells/metabolism , SARS-CoV-2 , Tryptases/metabolism , Viral Proteins , von Willebrand Factor
5.
J Allergy Clin Immunol ; 150(4): 739-747, 2022 10.
Article in English | MEDLINE | ID: covidwho-2061405

ABSTRACT

Mast cells (MCs) are widely recognized as central effector cells during type 2 inflammatory reactions and thought to also play a role in innate immune responses, wound healing, and potentially cancer. Circulating progenitor cells mature to MCs in peripheral tissues, where they exhibit phenotypic and functional heterogeneity. This diversity likely originates from differences in MC development imprinted by microenvironmental signals. The advent of single-cell transcriptomics reveals MC diversity beyond differences in proteases that were classically used to identify MC phenotypes. Here, we provide an overview of the current knowledge on MC progenitor differentiation and characteristics, and MC heterogeneity seen in health versus disease, that are drastically advanced through single-cell profiling technologies. This powerful approach can provide detailed cellular maps of tissues to decipher the complex cellular functions and interactions that may lead to identifying candidate factors to target in therapies.


Subject(s)
Hypersensitivity , Transcriptome , Cell Differentiation , Humans , Hypersensitivity/metabolism , Mast Cells/metabolism , Peptide Hydrolases/metabolism , Stem Cells
6.
Br J Hosp Med (Lond) ; 83(7): 1-10, 2022 Jul 02.
Article in English | MEDLINE | ID: covidwho-1988543

ABSTRACT

Mast cells are innate immune cells found in connective tissues throughout the body, most prevalent at tissue-environment interfaces. They possess multiple cell-surface receptors which react to various stimuli and, after activation, release many mediators including histamine, heparin, cytokines, prostaglandins, leukotrienes and proteases. In mast cell activation syndrome, excessive amounts of inflammatory mediators are released in response to triggers such as foods, fragrances, stress, exercise, medications or temperature changes. Diagnostic markers may be difficult to assess because of their rapid degradation; these include urinary N-methyl histamine, urinary prostaglandins D2, DM and F2α and serum tryptase (which is stable) in the UK. Self-management techniques, medications and avoiding triggers may improve quality of life. Treatments include mast cell mediator blockers, mast cell stabilisers and anti-inflammatory agents. 'Long COVID' describes post-COVID-19 syndrome when symptoms persist for more than 12 weeks after initial infection with no alternative diagnosis. Both mast cell activation syndrome and long COVID cause multiple symptoms. It is theorised that COVID-19 infection could lead to exaggeration of existing undiagnosed mast cell activation syndrome, or could activate normal mast cells owing to the persistence of viral particles. Other similarities include the relapse-remission cycle and improvements with similar treatments. Importantly, however, aside from mast cell disorders, long COVID could potentially be attributed to several other conditions.


Subject(s)
COVID-19 , Mast Cell Activation Syndrome , COVID-19/complications , Histamine/metabolism , Humans , Mast Cells/metabolism , Neoplasm Recurrence, Local , Quality of Life , Post-Acute COVID-19 Syndrome
7.
Eur J Pharmacol ; 930: 175169, 2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-1966536

ABSTRACT

The pulmonary pathological findings associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) result from the release of multiple proinflammatory cytokines, which causes the subsequential damage of the lungs. The current study was undertaken to investigate the responses of mast cells to viral inoculation and their contribution to host defenses from the point of view of viral entry. Pseudovirions, in which the spike glycoprotein of SARS-CoV-2 was incorporated, triggered activation of mast cells, and a mast cell-derived chymase, MCP2, formed a complex with spike protein, which promoted protease-dependent viral entry. According to the quantification results of viral entry, 10 µM quercetin, a mast cell stabilizer, potentially potently inhibited 41.3% of viral entry, while 100 µM chymostatin, which served as a chymase inhibitor, suppressed 52.1% of viral entry, compared to non-treated cells. Study using mast cell-deficient mice showed that the absence of mast cells may influence early viral loading in the upper respiratory tract, which consequently increases the risk of viral invasion into the lower respiratory system. Furthermore, mast cell-deficient mice exhibited ongoing infection in the late phase post-viral inoculation, while clearance of virus-positive cells was observed in wild-type mice. In conclusion, mast cells act as a multifaceted immune modulator that is equipped with both protective effects and pathogenic influences on viral entry of SARS-CoV-2. The utility of mast cell stabilizers and chymase inhibitors in the treatment of SARS-CoV-2-induced acute respiratory syndrome should be optimized regarding the infection stage and the risk of cytokine storm.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chymases , Mast Cells/metabolism , Mice , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
8.
Handb Exp Pharmacol ; 276: 133-159, 2022.
Article in English | MEDLINE | ID: covidwho-1930203

ABSTRACT

Mast cells (MCs) distribute to interface tissues with environment, such as skin, airway, and gut mucosa, thereby functioning as the sentinel against invading allergens and pathogens. To respond to and exclude these external substances promptly, MCs possess granules containing inflammatory mediators, including heparin, proteases, tumor necrosis factor, and histamine, and produce these mediators as a consequence of degranulation within minutes of activation. As a delayed response to external substances, MCs de novo synthesize inflammatory mediators, such as cytokines and chemokines, by sensing pathogen- and damage-associated molecular patterns through their pattern recognition receptors, including Toll-like receptors (TLRs). A substantial number of studies have reported immune responses by MCs through surface TLR signaling, particularly TLR2 and TLR4. However, less attention has been paid to immune responses through nucleic acid-recognizing intracellular TLRs. Among intracellular TLRs, human and rodent MCs express TLR3, TLR7, and TLR9, but not TLR8. Some virus infections modulate intracellular TLR expression in MCs. MC-derived mediators, such as histamine, cysteinyl leukotrienes, LL-37, and the granulocyte-macrophage colony-stimulating factor, have also been reported to modulate intracellular TLR expression in an autocrine and/or paracrine fashion. Synthetic ligands for intracellular TLRs and some viruses are sensed by intracellular TLRs of MCs, leading to the production of inflammatory cytokines and chemokines including type I interferons. These MC responses initiate and facilitate innate responses and the subsequent recruitment of additional innate effector cells. MCs also associate with the regulation of adaptive immunity. In this overview, the expression of intracellular TLRs in MCs and the recognition of pathogens, including viruses, by intracellular TLRs in MCs were critically evaluated.


Subject(s)
Histamine , Mast Cells , Adaptive Immunity , Chemokines , Cytokines , Humans , Immunity, Innate/physiology , Mast Cells/metabolism , Toll-Like Receptors
9.
Signal Transduct Target Ther ; 6(1): 428, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1585884

ABSTRACT

SARS-CoV-2 infection-induced hyper-inflammation links to the acute lung injury and COVID-19 severity. Identifying the primary mediators that initiate the uncontrolled hypercytokinemia is essential for treatments. Mast cells (MCs) are strategically located at the mucosa and beneficially or detrimentally regulate immune inflammations. In this study, we showed that SARS-CoV-2-triggered MC degranulation initiated alveolar epithelial inflammation and lung injury. SARS-CoV-2 challenge induced MC degranulation in ACE-2 humanized mice and rhesus macaques, and a rapid MC degranulation could be recapitulated with Spike-RBD binding to ACE2 in cells; MC degranulation altered various signaling pathways in alveolar epithelial cells, particularly, the induction of pro-inflammatory factors and consequential disruption of tight junctions. Importantly, the administration of clinical MC stabilizers for blocking degranulation dampened SARS-CoV-2-induced production of pro-inflammatory factors and prevented lung injury. These findings uncover a novel mechanism for SARS-CoV-2 initiating lung inflammation, and suggest an off-label use of MC stabilizer as immunomodulators for COVID-19 treatments.


Subject(s)
COVID-19/metabolism , Cell Degranulation , Lung Injury/metabolism , Mast Cells/metabolism , Pulmonary Alveoli/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/genetics , Cell Line, Tumor , Female , Humans , Lung Injury/genetics , Lung Injury/virology , Macaca mulatta , Male , Mice, Inbred BALB C , Mice, Transgenic , Pulmonary Alveoli/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
10.
Immunology ; 164(3): 541-554, 2021 11.
Article in English | MEDLINE | ID: covidwho-1488214

ABSTRACT

IL-33 and ATP are alarmins, which are released upon damage of cellular barriers or are actively secreted upon cell stress. Due to high-density expression of the IL-33 receptor T1/ST2 (IL-33R), and the ATP receptor P2X7, mast cells (MCs) are one of the first highly sensitive sentinels recognizing released IL-33 or ATP in damaged peripheral tissues. Whereas IL-33 induces the MyD88-dependent activation of the TAK1-IKK2-NF-κB signalling, ATP induces the Ca2+ -dependent activation of NFAT. Thereby, each signal alone only induces a moderate production of pro-inflammatory cytokines and lipid mediators (LMs). However, MCs, which simultaneously sense (co-sensing) IL-33 and ATP, display an enhanced and prolonged activation of the TAK1-IKK2-NF-κB signalling pathway. This resulted in a massive production of pro-inflammatory cytokines such as IL-2, IL-4, IL-6 and GM-CSF as well as of arachidonic acid-derived cyclooxygenase (COX)-mediated pro-inflammatory prostaglandins (PGs) and thromboxanes (TXs), hallmarks of strong MC activation. Collectively, these data show that co-sensing of ATP and IL-33 results in hyperactivation of MCs, which resembles to MC activation induced by IgE-mediated crosslinking of the FcεRI. Therefore, the IL-33/IL-33R and/or the ATP/P2X7 signalling axis are attractive targets for therapeutical intervention of diseases associated with the loss of integrity of cellular barriers such as allergic and infectious respiratory reactions.


Subject(s)
Adenosine Triphosphate/metabolism , Hypersensitivity/immunology , Interleukin-33/metabolism , Mast Cells/immunology , Animals , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/therapeutic use , Cell Degranulation/drug effects , Cytokines/metabolism , Disease Models, Animal , Eicosanoids/metabolism , Humans , Hypersensitivity/drug therapy , Interleukin-1 Receptor-Like 1 Protein/antagonists & inhibitors , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/antagonists & inhibitors , Lipidomics , Mast Cells/drug effects , Mast Cells/metabolism , Mice , Mice, Knockout , NFATC Transcription Factors/genetics , Primary Cell Culture , Receptors, Purinergic P2X7/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology
11.
Int J Mol Sci ; 22(21)2021 Oct 21.
Article in English | MEDLINE | ID: covidwho-1480798

ABSTRACT

Disseminated intravascular coagulation (DIC) is a severe condition characterized by the systemic formation of microthrombi complicated with bleeding tendency and organ dysfunction. In the last years, it represents one of the most frequent consequences of coronavirus disease 2019 (COVID-19). The pathogenesis of DIC is complex, with cross-talk between the coagulant and inflammatory pathways. The objective of this study is to investigate the anti-inflammatory action of ultramicronized palmitoylethanolamide (um-PEA) in a lipopolysaccharide (LPS)-induced DIC model in rats. Experimental DIC was induced by continual infusion of LPS (30 mg/kg) for 4 h through the tail vein. Um-PEA (30 mg/kg) was given orally 30 min before and 1 h after the start of intravenous infusion of LPS. Results showed that um-PEA reduced alteration of coagulation markers, as well as proinflammatory cytokine release in plasma and lung samples, induced by LPS infusion. Furthermore, um-PEA also has the effect of preventing the formation of fibrin deposition and lung damage. Moreover, um-PEA was able to reduce the number of mast cells (MCs) and the release of its serine proteases, which are also necessary for SARS-CoV-2 infection. These results suggest that um-PEA could be considered as a potential therapeutic approach in the management of DIC and in clinical implications associated to coagulopathy and lung dysfunction, such as COVID-19.


Subject(s)
Amides/therapeutic use , Blood Coagulation Disorders/drug therapy , Disseminated Intravascular Coagulation/drug therapy , Ethanolamines/therapeutic use , Palmitic Acids/therapeutic use , Sepsis/complications , Amides/chemistry , Amides/pharmacology , Animals , Blood Coagulation Disorders/etiology , COVID-19/pathology , COVID-19/virology , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Disseminated Intravascular Coagulation/etiology , Ethanolamines/chemistry , Ethanolamines/pharmacology , Fibrin Fibrinogen Degradation Products/metabolism , Lipopolysaccharides/toxicity , Lung/metabolism , Lung/pathology , Male , Mast Cells/cytology , Mast Cells/drug effects , Mast Cells/metabolism , Palmitic Acids/chemistry , Palmitic Acids/pharmacology , Partial Thromboplastin Time , Prothrombin Time , Rats , Rats, Sprague-Dawley , SARS-CoV-2/isolation & purification , Sepsis/pathology , Serine Proteases/metabolism
12.
Clin Exp Allergy ; 52(2): 324-333, 2022 02.
Article in English | MEDLINE | ID: covidwho-1437986

ABSTRACT

BACKGROUND: Deaths attributed to Coronavirus Disease 2019 (COVID-19) are mainly due to severe hypoxemic respiratory failure. Although the inflammatory storm has been considered the main pathogenesis of severe COVID-19, hypersensitivity may be another important mechanism involved in severe cases, which have a perfect response to corticosteroids (CS). METHOD: We detected the serum level of anti-SARS-CoV-2-spike S1 protein-specific IgE (SP-IgE) and anti-SARS-CoV-2 nucleocapsid protein-specific IgE (NP-IgE) in COVID-19. Correlation of levels of specific IgE and clinical severity were analysed. Pulmonary function test and bronchial provocation test were conducted in early convalescence of COVID-19. We also obtained histological samples via endoscopy to detect the evidence of mast cell activation. RESULT: The levels of serum SP-IgE and NP-IgE were significantly higher in severe cases, and were correlated with the total lung severity scores (TLSS) and the PaO2 /FiO2 ratio. Nucleocapsid protein could be detected in both airway and intestinal tissues, which was stained positive together with activated mast cells, binded with IgE. Airway hyperresponsiveness (AHR) exists in the early convalescence of COVID-19. After the application of CS in severe COVID-19, SP-IgE and NP-IgE decreased, but maintained at a high level. CONCLUSION: Hypersensitivity may be involved in severe COVID-19.


Subject(s)
Bronchi/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Duodenum/immunology , Hypersensitivity/immunology , Immunoglobulin E/immunology , Mast Cells/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Bronchi/metabolism , Bronchi/pathology , COVID-19/metabolism , COVID-19/pathology , COVID-19/physiopathology , Case-Control Studies , Coronavirus Nucleocapsid Proteins/metabolism , Duodenum/metabolism , Duodenum/pathology , Female , Humans , Hypersensitivity/metabolism , Hypersensitivity/pathology , Hypersensitivity/physiopathology , Lung/physiopathology , Male , Mast Cells/metabolism , Mast Cells/pathology , Middle Aged , Mucous Membrane/immunology , Mucous Membrane/metabolism , Mucous Membrane/pathology , Phosphoproteins/immunology , Phosphoproteins/metabolism , Recovery of Function , Respiratory Hypersensitivity/physiopathology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus/metabolism , Young Adult
13.
Front Immunol ; 12: 650331, 2021.
Article in English | MEDLINE | ID: covidwho-1156125

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection represents a global health crisis. Immune cell activation via pattern recognition receptors has been implicated as a driver of the hyperinflammatory response seen in COVID-19. However, our understanding of the specific immune responses to SARS-CoV-2 remains limited. Mast cells (MCs) and eosinophils are innate immune cells that play pathogenic roles in many inflammatory responses. Here we report MC-derived proteases and eosinophil-associated mediators are elevated in COVID-19 patient sera and lung tissues. Stimulation of viral-sensing toll-like receptors in vitro and administration of synthetic viral RNA in vivo induced features of hyperinflammation, including cytokine elevation, immune cell airway infiltration, and MC-protease production-effects suppressed by an anti-Siglec-8 monoclonal antibody which selectively inhibits MCs and depletes eosinophils. Similarly, anti-Siglec-8 treatment reduced disease severity and airway inflammation in a respiratory viral infection model. These results suggest that MC and eosinophil activation are associated with COVID-19 inflammation and anti-Siglec-8 antibodies are a potential therapeutic approach for attenuating excessive inflammation during viral infections.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, B-Lymphocyte/immunology , COVID-19/immunology , Eosinophils/immunology , Lectins/immunology , Mast Cells/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/immunology , SARS-CoV-2/immunology , Toll-Like Receptors/immunology , Animals , Antibodies, Monoclonal/pharmacology , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Antigens, Differentiation, B-Lymphocyte/metabolism , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , Case-Control Studies , Cytokines/metabolism , Disease Models, Animal , Eosinophils/drug effects , Eosinophils/metabolism , Eosinophils/virology , Host-Pathogen Interactions , Humans , Lectins/antagonists & inhibitors , Lectins/genetics , Lectins/metabolism , Mast Cells/drug effects , Mast Cells/metabolism , Mast Cells/virology , Mice, Transgenic , Peptide Hydrolases/metabolism , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL